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Dynamic ultrasound radiation force in fluids
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The subject of this paper is to present a theory for the dynamic radiation force produced by dual-frequency
ultrasound beams in lossless and nondispersive fluids. An integral formula for the dynamic radiation force
exerted on a three-dimensional object by a dual-frequency beam is obtained stemming from the fluid dynamics
equations. The static radiation force due to a monochromatic wave appears as a particular case of this theory.
Dependence of the dynamic radiation force to nonlinear effects of the medium is analyzed. We calculate the
dynamic radiation force exerted on solid elastic spheres of two different materials by a low-amplitude dual-
frequency plane wave. The static and dynamic radiation forces exhibited approximately same magnitude.
Resonance patterns observed in the dynamic radiation force are similar to those present in the static radiation
force.
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[. INTRODUCTION by two overlapping CW ultrasound beams whose frequencies
are slightly different[14,15. In this context, it has been
It is known that acoustic waves carry momentum. Whendemonstrated that viscoelastic properties of gel phantoms
an acoustic wave strikes an object, part of its momentum igan be accurately determined by measuring the amplitude of
transferred to the object, giving rise to the acoustic radiatiorvibration induced by the dynamic ultrasound radiation force
force phenomenofil—4]. Acoustic radiation force has found on a small sphere embedded in the med[ui®).
practical importance in many applications, for example, mea- Lord Rayleigh was the first to propose a theory for acous-
suring the power output of transducers in medical ultrasountic radiation force in lossless fluids due to compressional
machineq5], ultrasound radiometd6], liquid drops levita- waves[17]. Static radiation force in lossy fluids has been
tion [7], and motion of gas bubbles in liquid8]. In these Studied by Jiangt al.[18], Doinikov [19], and Danilovet al.
applications, the radiation force is static, being generated b{20]. A study of the static radiation force in a lossless isotro-
a continuous-wavéCW) ultrasound beam. pic elastic solid can be seen in RE21]. Usually the radia-
Time-dependentdynamig ultrasound radiation force can tion forcg exerted on an object target by a CW. ultrasound can
also be produced by amplitude-modulatéM) or pulsed be obtained by solving the vector surface integral of the
ultrasound beams. In general, an AM beam produces a hafdiation-stress tensddefined as the time average of the
monic radiation force at the modulation frequency, while Wr?(\a/?argigg]c?nnglirrnesféuﬁog&;i%es duir;afe(arrﬁgggtsr:ggintcr:]ige%?]gg;m
pulsed beam generates a pulsed radiation force. Dynami nd the scattered field by the object. Several authors derived

ra:)dlaetrlogff(t)r;:r? Zascé)een Qgpllng_OLr?:a(ﬁSgLirlgrQ ;hehu;trzzounﬁle static radiation force by solving the scattering problem of
pow ransgucers using ISK tar shaped- oy plane waves by spherical or cylindrical objef@8-29.

w;dge V?‘”;fjlo.]a and determining ultrasound absorption co- Most studies realized for the dynamic radiation force have
€ |IC|ent In figqui S[llgi' ic ul d radiation f h been focused on finding applications to it. No theoretical
n recent years, cynamic utr{:\soun radiation 0rce Najtforts to tackle the problem of dynamic ultrasound radiation
become of practical importance in elastography, specificall, e exerted on an embedded object in a medium have been
in the following imaging techniques: made whatsoever. Figure 1 depicts the theoretical realm of

* Acoustic radiation force impulse imagin@\RFl) uses 5. stic radiation force. This figure includes the contribution
pulsed ultrasound radiation force to produce displacement B¢ this paper: dynamic radiation force in lossless fluids.

tissue which is detecteq .to fprm an image .Of the “S[’im- Dashed ellipses show the lack of theoretical models for
e Shear wave elasticity imaginSWEI) images tissue ; g
ies by d ) h . duced b hacoust|c radiation force.
Eropertl_es Iy etec(tjlngds_ ear ‘?COUSUC v;ave(sj 'Q uceAMy : € The increasing applications of dynamic radiation force of
armonic ultrasound radiation force produced by an AM Ul ,;i-a56und in elastography techniques prompted us to de-

trasound bearfil3]. velop a method to calculate this force. Here, we present a

' \é!bro—acour?tography lmaps thg mde.ch.amc;al respogse ‘gweory of dynamic ultrasound radiation force exerted on
an object to a harmonic ultrasound radiation force produce rbitrary-shaped three-dimensional objects. The theory is re-

stricted to the radiation force produce by dual-frequency CW
ultrasound waves in lossless fluids. In what follows, we
*Electronic address: glauber@tci.ufal.br briefly discuss the dynamic equations of lossless fluids in
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FIG. 1. The diagram showing the theory of acoustic radiationthe fluid. The conservation of fluid mass is represented by
force in different propagating mediums. Dashed ellipses show th&q. (1). Equation(2) is a version of the Newton’s second law
lack of theory for acoustic radiation force. in fluid dynamics. Equatiori3) is an adiabatic equation of

state known as Tait's equation.
Sec. Il A. In Sec. Il B, we present a theory of ultrasound A lossless fluid is irrotational. Thus, according to the
radiation force. We obtain a formula for the dynamic ultra- Helmholtz vector theorem, the particle velocity can be ex-
sound radiation force exerted on an object by a dualPressed in terms of the velocity potential functigras
frequency CW ultrasound wave. The formula is given in _
. s v=-1V ¢. (4)

terms of a vector surface integral of the wave velocity po-
tential over the object’'s surface. Explicit dependence of thélhe velocity potential can be expanded as a sum of a linear
dynamic radiation force with the medium nonlinearity is term and higher-order contributions as follows,
pointed out. In Sec. Ill, we apply the theory to calculate the

Sl

FIG. 2. The net force exerted on an object by an ultrasound
beam. The dotted contour depicts changes on the object’s surface.

lossless,
1sotrop1c
solid

1) 2)

dynamic ultrasound radiation force exerted on solid elastic p=¢T+ T+ ' (5)
(brass and stainless steapheres. Finally, in Sec. IV we where ¢V and ¢ are the linear and the second-order ve-
summarize the main results of this paper. locity potentials, respectively. In terms of the linear velocity
potential, the linear pressure and velocity fields are given by

(1)
Il. THEORY a¢
p(l):PO gt ' (6)
A. Dynamics of lossless fluids
Consider a homogeneous isotropic fluid in which thermal VR e 7

conductivity and viscosity are neglected. This corresponds to
the so-called ideal fluid. The medium is characterized by the
following acoustic fields: pressugg densityp, and particle
velocity v. Here all acoustic fields are functions of the posi- A volume element in a fluid is subject to a stress caused
tion vectorr e R3 and timet € R. In an initial state without by the sound wave propagation throughout it. Stresses
sound perturbation these quantities assume constant valugdused by sound perturbation in the fluid should be described
given by p=p,, p=po, andv=0. The quantityp—p, is the by Eq.(2).
excess of pressure in the medium. The equations that de- Consider an ultrasound beam striking a homogeneous ob-
scribe the dynamic of ideal fluids can be derived from condect of finite extension and surfac® at rest. As the ultra-
servation principles for mass, momentum, and thermodysound field hits the object, its surface may be deformed and
namic equilibrium. These equations, neglecting effects oflislocated. We denote the object's surface at the tilmeS.
gravity, are presented here as follof29]: Figure 2 depicts the interaction between the incident ultra-
sound wave and the object target.
1) The instantaneous net foréeacting on the object is ob-
tained by integrating Eq2) on the object’s volume. Since
the ambient pressung, does not contribute to the net force

B. Instantaneous net force

p
—+V -(pv)=0,
P (pv)

dv on the object, we can replageby p-p, in Eqg. (2). Hence,
pa=- Vp, (2) integrating Eqg.(2) on the object’s volume and using the
Gauss’ integral theorem, we obtain
(1+B/A)
p= Po(ﬂ) ; 3) f= f (p = po)ndS, (8)
Po S

whereV is the gradient operator, the symbol - stands for thevheren is the outward normal unit-vector of the integration
scalar product, an@®/A is the Fox-Wallace parametg80]  surface.

which characterizes the nonlinearity of the fluid. Equations Radiation force is a phenomenon that depends on the in-
(1)—~(3) form a system of nonlinear partial differential equa- teraction of second-order acoustic fields with the object tar-
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get. To avoid the integration op—-p, over the time- equation to calculate the static and the dynamic radiation
dependent object’s surfac® we need to findo—-p, up to  forces.

second order. The idea is to replegby S, for second-order

integrands in Eq(8). For first-order integrands, we should C. Static radiation force

keep S and analyze the contribution of the integral to the
radiation force. From Eq9.1)—(3), one can show that the
second-order excess of pressure is giveridy

The static component of the net foréeis commonly
known as acoustic radiation force. Here, we call it static
radiation force. Acoustic radiation force has been studied as a

apt  agp? p®2  pv .y time-averaged force. The rule of the time average is to iso-
P=Po=po + 2~ C) late the static componelitv=0) of the net force acting on
(?t &t 2p0C0 2 .
the object.

wherec, is the small-amplitude speed of sound. Substituting Consider an incident ultrasound wave, periodic in time,

Eqg. (9) into Eq.(8) and holding terms up to second order, we striking the object target. The static component of the radia-

find tion force corresponds t@=0 in Eq. (13). The first two
integrals on the right-hand side of this equation become zero.

(1) (2) . I .
f= ‘Pof ¢ nds-— pOJ ¢ nds-— 1 2J pY2nds Therefore, the static radiation force is
s & s S

2poCo
fu=- [ AT
Y

+ %0 f ¥ .v®)nds, (10
o Recognizing that the time average ©f over a long time
By using the relatiorj23] interval is(T)=F[T],-0, we get
Y d
f ndS=— f $PndS+ f (n-v)vWds fo=- f n-(T)dS. (14)
in Eq. (10) and again keeping up to the second-order termsNote thatf is a real quantity.
we get The static radiation force can be understood as follows.
d The incident ultrasound beam is scattered by the object. The
f=-— p0—<f »PndS+ f ¢(2)nd8> - f n-Tds. static radiation force is the time-averaged rate of the momen-
dt\Js S S tum change due to the scattering by the object.
(11) The time average of the radiation-stress is a zero-

_ o ~ divergence quantity, i.eY (T)=0 [4]. This means that no
We call the quantityT as the radiation-stress tensor. It is static radiation force is present in an ideal fluid if there is no

given by target. Consequently, steady streaming does not happen in
lossless fluid$33].
(1)2 (1) . D)
— |: p - Po(V \" ):|| +p0V(l)V(1)- (12)
2poCo 2 D. Dynamic ultrasound radiation force
wherel is the 3x 3-unit matrix andpov®vV is a dyad[32] In this section, we concentrate on the dynamic radiation
known as the Reynolds’ stress. We have written down Edgforce produced by ultrasound beams whose amplitude is
(12) using the identities -vvV =(n-v)v® andn-1=n. modulated in time. The amplitude-modulatédM) ultra-
Considerg as a function of time. The Fourier transform of sound beam is described by its cardgrand modulatiom\f
g is defined as frequencies. Here, the time modulation in amplitude of the
. ultrasound beam is realized by overlapping in space two CW
R — tyeetdt, ultrasound beams of slightly different frequenciés=f,
9(w) = F1gl f_m 9V +Af/2 andf,=f,—Af/2, wheref, andAf are also called the

) . ) center and the difference frequencies, respectively. The cor-
where w (angular frequenagyis the reciprocal variable df responding angular frequencies of the beam age 27f,
andj is the imaginary-unit. To analyze the frequency com-gn( wp=27f,. We call the resulting beam the “dual-
ponents present in the net of force, we take the Fourier transrequency ultrasound beam.” In fact, if the amplitude and the

form of Eq. (11) as follows: phase of the two waves are the same, we have a suppressed
carrier AM beam.
f(w) = —jwpojrlf &”ndS} - jprJ F$?]IndS Consider an incident dual-frequency ultrasound beam hit-
s S ting an object. The first-order velocity potential is formed by

incident and scattered waves in the medium as follows
¢ = Re{ghel et + et (15)

This equation gives a description of the frequency spectrurihere R¢:} is the real-part of a complex quantity. The func-
of the net of force acting on the object. We shall use thistions ¢, and ¢, are spatial complex amplitudes of each fre-

—f n-FT]dS (13
S
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quency component of the wave and they are given as the suthus, by taking the Fourier transform of it and isolating the
of the velocity potential amplitudes of the incident and scat-frequency componenb=Aw, we obtain
tered waves.

The radiation .force exerted on f[he object by the dual'— ]_—{ f ¢(1)nds} - ]_-l f v(l)dv}
frequency beam includes the following components: a static s Py
componeni{w=0), a component at the difference frequency

Aw, and high-frequency components ab,2 2wy, and w, Lo e ) .
+wy. In this paper, the component Aw is called the dy- function inside the volumeV, there exists a point, e_b\/
namic radiation force. such that[34] [sv®dV=8wWW(rq,t). Thus, the amplitude

To obtain the static and the dynamic radiation force pro-Of the dynamic radiation force of the first term in Eg0) is

w=Aw w=Aw

Inasmuch as the particle velocity is a limited and continuous

duced by the dual-frequency ultrasound beam, we calculate

the Fourier transform of the radiation stréSsip to the dif- Fo= —ijAw]-'lf ¢(1)nd8} = JA@F MV r0s
ference frequencw. Substituting Eq.(15) into Eq. (12), S w=Ao

through Eqs(6) and(7), and taking the Fourier transform of (21)

the result, we obtain the stati€T), and the dynamic‘wa,

(1) —\,(2) - i
radiation stresses as follows: wherevy”=v¥(rq,t) and M =pyV corresponds to the fluid

mass variation at the timecaused by the object vibration.
(T) =(T) +(Ty), (16)  Therefore, the dynamic radiation force can be written as

. o . L P @ 5(2)
Tau=2lkodadis~ ¥ dar V) + VIV G, fao ZIROTLOMVG Juzse ’A“’""Lo‘f’m”ds

+V ¥ dal. (17 -2 j [(kekobadt = ¥ $a- ¥ g
The quantitiegT,) and(T,) are the averaged radiation stress ® A .. .
of each frequency component of the dual-frequency wave +(N- V@)V, +(n- V) VpldS (22

andk,=w,/cy andky,=wy/co. Explicitly, the averaged radia-

tion stresse<T,) and(T,) are given by Thus, the dynamic radiation force exerted on the object

target comes from three different interactions between the
Po 25 1o - Po e ~ . ultrasound field and the object. The first term on the right-
<Tm>:Z(km|¢m| uAK Bl +E(V¢mv ¢m), M=ab.  hand side of Eq(22) corresponds to momentum rate ex-
change due to fluid mass variation caused by the object vi-
(18) bration. The next term in this equation accounts for the
interaction of the second-order velocity potential with the
object target. None of these terms are present on the static
radiation force formula19). The last term in Eq(22) is

Now both the static and dynamic radiation force can be ob
tained. According to Eq(14) the static radiation force is

related to the interaction of the radiation-stress and the ob-
fs= ‘f n-(Ta) +(Ty)dS. (19 ject. We shall apply Eq(22) to calculate the dynamic radia-
% tion force on a solid sphere.
Based on Eq(13) the amplitudgin complex notatiopof the In the time domain, the dynamic radiation force is given
dynamic radiation force akw is as the inverse Fourier transform bf,. Therefore, the dy-
namic radiation force exerted on a object is given by
fFoo=oj ® | 3@ .
frw JPOA‘U{ f[ JS¢ ndS] . fSD d’AwndS} fou (D) = Re{wae'A“’t}. (23

_f N ds (00 Note that if Aw=0 and ¢,=¢,, we havef,,=f. Conse-
S Aw= quently, the magnitude of both dynamic and static radiation
forces becomes equal wheénw=0.
where (’\ﬁ(ii:f[¢(2)]w=Aw'
Let us analyze the contribution of the first integral on the!ll. DYNAMIC RADIATION FORCE ON A SOLID SPHERE
right-hand side of Eq(20). By using the Gauss' integral
theorem, this integral can be expressed as

Jd;(l)ndsz—f
s v

0

A. Linear ultrasound scattering

Consider a collimated dual-frequency plane wave de-
scribed by Eq.(15) impinging on a solid elastic sphere of
radiusr localized at the origin of the coordinate system. The
beam propagates along tkeaxis. The sphere is character-
whereV, is volume of the object at rest ad¥ is the volume ized by three parameters: densjy, compressional wave
variation of the object induced by the excess of pressure apeedc;, and shear wave speed The amplitude functions
the timet (see Fig. 2 The first integral in this equation does of the incident plus the scattered waves are given, in spheri-
not have any harmonic term at the difference frequehey  cal coordinates, by35]

vldv- f vy,
o
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Bm=Ao> 20+ 1)(= )"Tjn(Kel) + Sph'? (k)]
n=0

XPy(cosh), m=a,b. (24)

whereA, is the magnitude of the incident wavg,=w,,/Co,

in is the spherical Bessel functio§,,, is the scattering func-

tion determined by boundary conditions, ah{f) is the

spherical Hankel function of the second kind. The scatterin

function is given by

_ Dm,njn(xm) - ij ,;(Xm)
Dm,nh?(xm) - thgz),(xm) ’

Sm,n: = a,b, (25)

where the prime symbol means derivative with respect to the

function’s argument andy,=Kkuro. The coefficientDy,, is
given by

b - po(xm,s>2< Nin(Xme) = Xmeine1(Xme)
™ 200\ (0= Dja(Xine) = Xmcine1(Xme)
2n(n+ 1)jn(Xmse)
) (2n2 - szn,s - 2)j n(Xm,s) + me,si n+1(Xm,s) )
( (X2 = 0 + 1) (Xime) = Pencine1(Ximo)
(N = 1)jn(Xine) = Xmelne1(Xme)
_2n(n+ (L = n)jp(Xms) + xm,sjn+1(xm,s>]>‘1
(2n% = %5 5= 2)in(Xms) + 2Xmsine1(Xims)

(26)

whereXm = (Co/ Co)Xm and Xm s=(Co/ C) X

The solution for the rigid and movable sphere can be ob-
tained by settingc;, cs— o in the previous discussion. The

solution for liquid spheres is achieved by letting— 0.

B. Second-order ultrasound scattering

Before calculating the dynamic radiation force, we need
to analyze the contribution of the second-order velocity po-

tential in Eq.(22). The amplitude functiorz}f{l for an inci-

PHYSICAL REVIEW E71, 056617(2005

2 o]
B = =i 2 (2n+ D= ) Tin(Akn) + S (Akn)]
Wnp=o
X P,(cos#), (28)

where the scattering functiog, is given through Eqs(25)
and(26) by settingx,,=Akr,,.

According to Eq.(22) the contribution of the second-
order velocity potential is given by integrating E@8) over

%he sphere surface. This contribution to the dynamic radia-

tion force has only one component in thdirection given by

Fi=- jZngpkoJ 2 (ro)sin 6 cos6de
0

4e .
== iR ia(Akrg) + ShP (k)] (29)
whereEo=(pou§)/2 is ultrasound energy density at the wave
source.

C. Dynamic radiation force function

To calculate the dynamic radiation force we introduce the
following variablesu,,=k,r (m=a,b) andv=cosé. By sym-
metry considerations the dynamic radiation force on the
sphere is only in the direction. Substituting Eq(24) into
Eq. (22) leads to the amplitude of the dynamic radiation
force as

fao=Fo+Fi+Fp+Fa+Fy+Fe, (30)

where the amplitude functions are

1
Fo = mt2pokaks f $alar0) Bp0)udv,  (31)
-1

by

(32
Ug=Xgy d Up

vdv,
szxb

dent wave is calculated in the Appendix. In the preshock

wave range, it is given by

2
B, == e, (27)

wheree=1+B/(2A), v, is the peak amplitude of the particle

velocity at the ultrasound source, addk=Aw/cy. To sim-
plify our analysis it was assumed thakz<1. If the differ-

1 ~ ok
d Jd
Fa= Wpof 9¢a ﬂ’ v(1-vddv, (33
-1 [?U U, =X, (?U Ub:)(b
N A
a(bb ﬁd’a
Fs=- 71"'opof ( - -
-1 2 Y Up=Xp d Ua Ug=Xy
ad by
k2% 9%y )(1 —v)dv, (34)
v Ug=Xqy Uy Up=Xp

andF, andF; are given by Eqs(21) and(29), respectively.
To obtain the amplitude functions of the dynamic radia-

ence frequency is about 10 kHz, then the target should bgyn force in Eq. (30), we substitute Eq(24) into Egs.

around 1 cm of the ultrasound source.

(31)—~(34), which leads to

Now, we need to solve the scattering problem for the

second-order velocity potential. This problem is similar to
the linear scattering presented in Sec. Il A. Hence, the total

27Tr2EAw - * "
Fo=- #2 (n+ 1)Xaxb(Ra,an,n+1 + Ra,n+1Rb,n)’

second-order velocity potential amplitude can be written in a’b  n=0

spherical polar coordinates as

(35
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2 > TABLE I. The physical constants used in the calculation of the
27Tr0EAw ’ )k , * .. y
Fy=-— —E (n+ 1)xaxb(Ra’ann+l + Ra’nﬂRb’n), radiation force functions.
XaXp  n=0
(36) Speed of sound
2 2E, & Density Compressional Shear
Fa== 222 n(n+ 1)+ 2(RaRyper + RopaRyp),  Material (Kg/m®) (s (m's

XaXp  n=0 ’ ’ Y ’
37) Brass 8100 3830 2050
( Stainless steel 7670 5240 2978

271 2Ep ) < " A
Fs= —E [n(n+1) (XbRa,an,n+1 + XaRa,n+1Rb,n)

XaXo o the incident beam. The static radiation force on a spherical

. X target has been calculated by Hasegd®d@. The result
- (I"I + 1)(” + 2) (XaRz;an,ml + XbRa,n+1RiI3,n)]y (38) reads

whereRy, ,=(=))"[jn(Xm) +Sﬂ,nhf)(xm)] andE,,, = pokak,A3 is o= TH(EYa+ EpYpe,,

the difference frequency component of the ultrasound ener

density. a y P g%hereEm:po(kon)2/2 (m=a,b). The quantityY,, is the ra-
Let us focus on the contribution df, to the dynamic diation pressure function given by

radiation force on the sphere. The magnitude of the velocity 47

particle of the incident plane wave 5/ (poCo), Wherepy is Ym=— =2 N+ Damn+ dmpe1 + 2¥mn@mnst

the magnitude of the incident pressure. The magnitude of the Xmn=0 ' ’ o

velocity particle inside the object volume variatiafV is _
smaller than its counterpart in the fluid. Hence, from &4) * 2BmnBmns),  M=3,b, 4D
we have |Fo| <AwdMpapo/ (poCo), Where oMy is the  whereay,, and 8., are the real and the imaginary parts of

maximum amount of fluid mass dislocated by the sphergﬂn, respectively. Moreover, whew=0, then\?Aw:Ym,
vibration. Measurements of the amplitude dislocation in- 'Finally, the total radiation force exerted on the sphere by
duced by the dynamic radiation for¢af <1 kHz, fyaround the dual-frequency plane wave is given by

1 MHz, andp,< 60 kPa on a stainless steel sphere of 1. mm

diameter in water yielded results less thaprh [36]. Now, fradt) = TT3(EaYa+ EpYp + Ex Re(Y, e2Ne,. (42)

we compare the magnitude Bf andF,. From Eq.(35) we

have
D. Numerical evaluation of the dynamic radiation force

Fol| _ pofdAfrasr -
E. < T The dynamic radiation force functiov, , was evaluated
2 oro numerically in MaTLAB 6.5 (MathWorks, Inc). Two different
wheredr is the sphere radius variation. For the given condi-materials were chosen in this evaluation: brass and stainless
tion of the experiment on measuring the dislocation ampli-steel. The physical constants of the analyzed spheres are
tude of the sphere caused by the dynamic radiation force, thgiven in Table |. The surrounding fluid of the sphere was

ratio |Fo/F4|~1072 In this case or whenevefr is negli- assumed to be water with densjiy=1000 Kg/n? and com-
gible, only the componentS; to F5 are relevant to the ra- pressional velocitg,=1500 m/s. The radius of the sphere is
diation force formula(30). ro=0.5 mm.

One can show from Eq23) that the dynamic radiation We are interested here in analyzing how the dynamic ra-
force on the sphere in the time domain is diation force changes with the center frequefigyWe evalu-

ate the functiory,, as a function okgyr, varying from 0.1 to
10. The difference frequencyAf was fixed to 0, 50,
and 100 kHz. To assure that the center frequefgyis
always positive, we assume thaf, varies from

fau() = mT2Er, RE[Y,,8°e,, (39)

Where\A(Aw is the dynamic radiation force function given by

. > . 50 kHz to 4.77 MHz.
Yaw=" > (n+ D{[XaXo — N(N+ 2)J(Ra Ry 111 Before presenting the numerical evaluation results, let us
XaXon=0 take a closer look at the contribution of the second-order
+ Rane1Ro ) + NXoRa Rl 1 + XaR, a1Re ) = (N+2) velocity potential to the dynamic radiation force given in Eq.
' | o ' T (29). For the frequency range considered here, the energies
X (XaR4 nRo ne1 + XoRa,n+1R0n) + XaXo(RE nRb et E, andE,, are about the same order of magnitude. In this
+ R;n+1Rt,)Tn)}_ Ro, (40) case, the numerical evaluation Bf, [see Eq.(40)] _for th_e
chosen frequency range has shown that the dimensionless
whereRo:(4sEo/3EAw)[j1(Akro)+Slh(12)(Akro)]. amplitude of this quantity10~) is much smaller than the

The sphere is also subjected to a static radiation forceynit. In fact, for the frequency range used in the simulations
which is the sum of the force due to each ultrasound wave inwe haveAkry<<1. Therefore, we may neglect the contribu-
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FIG. 5. The dynamic radiation force function A$ varies for
the brass sphere. Legend: dashed likg,=3.55 and solid line
(kor=4.82.

FIG. 3. The dynamic radiation force function of the brass

sphere. The inset plot is the phaseﬁw. Legend: dashed line
(0 kH2z), dotted line(50 kHz), and solid line(100 kH2).

The function|Y,,| for the stainless steel sphere witf
=0 presents dips, as shown in Fig. 4. The first dips occurs at
' . -Koro=5.17. At Af=100 kHz, the fluctuations iY,, have a
l_n F|gs. 3 and 4’_ we see the.magmtude 9f the dynam'éc;(i)ﬁ%rent pattern with smaller amplitude comparAed to the case
radiation force functionY,,|. The inset of the figures shows of Af=0. The phase OﬁAw is practically constant when
tr)e phase off,,. We can see that whehf=0 the function Af=50 kHz, except wherkyro<1. For Af=100 kHz, the
Y, of both materials is equal to the radiation pressurephase exhibits fluctuations with amplitude of abau6 rad.
function Y,,, as expected. The dynamic radiation force func-The phase fluctuations follows the pattern exhibited in the
tion of both material exhibits a fluctuation patteidips and  magnitude ofY,,,.
peaks due to resonances of the ultrasound wave inside the Now we analyze how the dynamic radiation force on the
sphere. The fluctuations depend on resonances of the scattspheres depends upaf for a givenf, The values chosen
ing functionS;, ,, which is related to the material parametersfor f, for both spheres correspond to resonances in the static
(density, compressional, and shear speed of the JwdN@e radiation force. The difference frequenayf varies from
significant changes irfY,, (magnitude and phasere ob- -100 to 100 kHz to show how the functior), behaves in
served as the difference frequency varies from 0 to 50 kHzthe vicinity of a resonance. In Fig. 5, we have the function
Further, the phase remains practically constant with zergy, | piotted for the brass sphere. The phas¥ gf is shown
value. This occurs because at 50 kHz we hake;,=0.02,  in the inset of the figure. We fixekpr, to 3.55 and 4.82 for
which implies kro=kyro. ThusY,, approaches t&/,, (m the dashed and solid lines, respectively. These values corre-
=a,b). spond to the first peak and dip, respectively, in Fig. 3. Both

For the brass sphere, a prominent peak occurfrip|  the magnitude and phase ¥f, change shape considerably
with Af=0 atkyr,=3.55, as seen in Fig. 3. When the differ- askoro changes. A
ence frequency is 100 kHz, the peak changes its position to The plot of the functiony,,, of the stainless steel sphere
3.27 and the whole fluctuation pattern changes. However, thgs Af varies is shown in Fig. 6. The inset of the figure plots

fluctuation form follows that one oAf=0 with smaller am- e phase o’h?A |. The quantitykro was fixed at the first and
plitudes. The phase also presents a fluctuation whose amp 2cond dips, \thich corresponds to 5.17 and 6.85 for the

tude is approximatelyr/6 rad. dashed and solid lines, respectively.

tion of R, to the dynamic radiation force function given by
Eq. (40) hereafter.
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FIG. 4. The dynamic radiation force function of the stainless FIG. 6. The dynamic radiation force function a$ varies for

steel sphere. The inset plot is the phas&gj. Legend: dashed line the stainless steel sphere. Legend: dashedkigg=5.17) and solid
(0 kHz), dotted line(50 kH2), and solid line(100 kH2. line (korg=6.85.
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TABLE II. The relative difference between static and dynamic sidered that the dislocation of the sphere is very small. The

radiation force magnitudes in %. contribution of the medium nonlinearity to the dynamic ra-
diation force is negligible ifAkro<1 in a weak nonlinear
Relative difference medium. However, it may become more significant in
Af strongly nonlinear mediums or whetkry~1. Numerical
(kHz2) Brass Stainless steel evaluation of the dynamic radiation force function revealed a
fluctuation pattern as the center frequency varies. The fluc-
1 0.00 0.00 tuations are similar to those present in the static radiation
20 0.11 0.49 force function. Analysis of the static and the dynamic radia-
40 0.45 1.75 tion force on the sphere has shown that they have approxi-
60 1.04 3.20 mately the same magnitude.
80 1.86 4.34 In conclusion, the presented dynamic radiation force for-
100 287 4.89 mula (22) generalizes Yosioka's formul®3], which stands

only for static radiation force. The dynamic radiation force

formula can be extended for a multi-frequency CW ultra-
A comparison of the normalized magnitude of static ands_ound bea_m. This Is pa_rtic_ularly useful to study pulsed radia-

dynamic radiation forces for different values Af can be tion forcg n which the quent gltrasound beam can be ex-

seen in Table Il. For each sphere the center frequency was Sg@nded in time as a Fourier series.

in the first resonance of the static radiation force. The reso-

nances correspond t@ro=3.55 andkyr,=5.17 for the brass

and stainless steel spheres, respectively. The static radiation This work was partially supported by Grant No.

force functionsY, andY,, were calculated through E¢1). DCR2003.013-FAPEAL/CNP¢Brazil).

The magnitudes are normalized by the highest ultrasound

energy densityE, times the cross-section area of the sphere. APPENDIX: SECOND-ORDER VELOCITY POTENTIAL

Hence, the static and the dynamic radiation force magnitudes To calculate the contribution of the second-order velocity

become fS:Ya+.(kb/k.a)2Yb and fdz(kb/k_a”_YA“’L reSPEC-  hotential to the dynamic radiation force on the sphere, we

tively. '_I'he re_Iaan difference of the radiation force magni- consider the lossless Burger's equation

tudes is defined in percent asf2fJ/(fq+fy)-100%. As

ACKNOWLEDGMENTS

shown in Table I, the static and dynamic radiation forces v € v -0

present have apprpximz_ately the same magnitude f_or both oz cg” ar

spheres. The relative difference becomes largeAfsn-

creases. where v is the velocity particle in thez direction, e=1

+B/(2A), and 7=t-2z/c, is the retarded time. The source

wave form is given by
IV. CONCLUSIONS

0,7) =vg[sin +Si ,
We have presented a theory to calculate the dynamic ul- 0(0,7) = vlsin(we7) Nwp7)]

trasound radiation force exerted on an object by a dualwherev, is the peak amplitude of the velocity particle at the
frequency CW ultrasound beam in lossless fluids. The theorwave sourcéz=0). Hence, the second-order velocity particle
is valid for beams with any spatial distribution. The ampli- at the difference frequency in the preshock wave range is
tude of the induced vibration by the dynamic radiation forcegiven by[37]
on the object was assumed to be much smaller than its char- 5
acteristic_ dimensions. No a}ssumptions have been made_ on U(Azc)uz _ %Akzsin(Awt—Akz).
geometric shape of the object. A formula for the dynamic 2¢cy
fri"’r‘gt'_at;?]ré fgrra?:?)r\:\(/ja-lcs)r?jgtra\l/rgg;seeoia?a_lsln'It'ﬁremgeOfet:sencThis approximated solution is valid farvgAkz/cy<1. We

yp ’ P Sbtain the second-order velocity potential at the difference

of the dynamic radiation force with the nonlinear param(::terfre uency by intearating this equation ow@Thus. in com-
B/A of the medium was analyzed. d y by 9 9 q '

We have calculated the dynamic radiation force exerted’ lex notation, the amplitude of the velocity potentialiad is

on a solid sphere by a dual-frequency CW plane wave in ~2) gvg ik

water. The dynamic radiation force is proportional to the AaFm(AkZ—J)eJ :

cross-section area of the sphere, the dynamic ultrasound en-

ergy, and the dynamic radiation force function. The contri-Notice that the time-dependent integration constant was
bution of the first-order velocity potential to the radiation dropped because it evaluates zero in the closed surface inte-
force, accounted by E@30), was neglected because we con-gral of Eq.(22).
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