
Dynamic ultrasound radiation force in fluids

Glauber T. Silva*
Departamento de Tecnologia da Informação, Universidade Federal de Alagoas, Maceió, AL, Brazil, 57072-970

Shigao Chen, James F. Greenleaf, and Mostafa Fatemi
Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 1st Street SW,

Rochester, Minnesota, 55905, USA
sReceived 31 August 2004; revised manuscript received 9 December 2004; published 26 May 2005d

The subject of this paper is to present a theory for the dynamic radiation force produced by dual-frequency
ultrasound beams in lossless and nondispersive fluids. An integral formula for the dynamic radiation force
exerted on a three-dimensional object by a dual-frequency beam is obtained stemming from the fluid dynamics
equations. The static radiation force due to a monochromatic wave appears as a particular case of this theory.
Dependence of the dynamic radiation force to nonlinear effects of the medium is analyzed. We calculate the
dynamic radiation force exerted on solid elastic spheres of two different materials by a low-amplitude dual-
frequency plane wave. The static and dynamic radiation forces exhibited approximately same magnitude.
Resonance patterns observed in the dynamic radiation force are similar to those present in the static radiation
force.
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I. INTRODUCTION

It is known that acoustic waves carry momentum. When
an acoustic wave strikes an object, part of its momentum is
transferred to the object, giving rise to the acoustic radiation
force phenomenonf1–4g. Acoustic radiation force has found
practical importance in many applications, for example, mea-
suring the power output of transducers in medical ultrasound
machinesf5g, ultrasound radiometerf6g, liquid drops levita-
tion f7g, and motion of gas bubbles in liquidsf8g. In these
applications, the radiation force is static, being generated by
a continuous-wavesCWd ultrasound beam.

Time-dependentsdynamicd ultrasound radiation force can
also be produced by amplitude-modulatedsAM d or pulsed
ultrasound beams. In general, an AM beam produces a har-
monic radiation force at the modulation frequency, while a
pulsed beam generates a pulsed radiation force. Dynamic
radiation force has been applied for measuring the ultrasound
power of transducers using a disk targetf9g or a shaped-
wedge vanef10g, and determining ultrasound absorption co-
efficient in liquidsf11g.

In recent years, dynamic ultrasound radiation force has
become of practical importance in elastography, specifically
in the following imaging techniques:

• Acoustic radiation force impulse imagingsARFId uses
pulsed ultrasound radiation force to produce displacement in
tissue which is detected to form an image of the tissuef12g.

• Shear wave elasticity imagingsSWEId images tissue
properties by detecting shear acoustic waves induced by the
harmonic ultrasound radiation force produced by an AM ul-
trasound beamf13g.

• Vibro-acoustography maps the mechanical response of
an object to a harmonic ultrasound radiation force produced

by two overlapping CW ultrasound beams whose frequencies
are slightly differentf14,15g. In this context, it has been
demonstrated that viscoelastic properties of gel phantoms
can be accurately determined by measuring the amplitude of
vibration induced by the dynamic ultrasound radiation force
on a small sphere embedded in the mediumf16g.

Lord Rayleigh was the first to propose a theory for acous-
tic radiation force in lossless fluids due to compressional
waves f17g. Static radiation force in lossy fluids has been
studied by Jianget al. f18g, Doinikov f19g, and Danilovet al.
f20g. A study of the static radiation force in a lossless isotro-
pic elastic solid can be seen in Ref.f21g. Usually the radia-
tion force exerted on an object target by a CW ultrasound can
be obtained by solving the vector surface integral of the
radiation-stress tensorsdefined as the time average of the
wave momentum fluxd over a surface enclosing the object.
The radiation stress is obtained in terms of the incident beam
and the scattered field by the object. Several authors derived
the static radiation force by solving the scattering problem of
CW plane waves by spherical or cylindrical objectsf22–28g.
Most studies realized for the dynamic radiation force have
been focused on finding applications to it. No theoretical
efforts to tackle the problem of dynamic ultrasound radiation
force exerted on an embedded object in a medium have been
made whatsoever. Figure 1 depicts the theoretical realm of
acoustic radiation force. This figure includes the contribution
of this paper: dynamic radiation force in lossless fluids.
Dashed ellipses show the lack of theoretical models for
acoustic radiation force.

The increasing applications of dynamic radiation force of
ultrasound in elastography techniques prompted us to de-
velop a method to calculate this force. Here, we present a
theory of dynamic ultrasound radiation force exerted on
arbitrary-shaped three-dimensional objects. The theory is re-
stricted to the radiation force produce by dual-frequency CW
ultrasound waves in lossless fluids. In what follows, we
briefly discuss the dynamic equations of lossless fluids in*Electronic address: glauber@tci.ufal.br
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Sec. II A. In Sec. II B, we present a theory of ultrasound
radiation force. We obtain a formula for the dynamic ultra-
sound radiation force exerted on an object by a dual-
frequency CW ultrasound wave. The formula is given in
terms of a vector surface integral of the wave velocity po-
tential over the object’s surface. Explicit dependence of the
dynamic radiation force with the medium nonlinearity is
pointed out. In Sec. III, we apply the theory to calculate the
dynamic ultrasound radiation force exerted on solid elastic
sbrass and stainless steeld spheres. Finally, in Sec. IV we
summarize the main results of this paper.

II. THEORY

A. Dynamics of lossless fluids

Consider a homogeneous isotropic fluid in which thermal
conductivity and viscosity are neglected. This corresponds to
the so-called ideal fluid. The medium is characterized by the
following acoustic fields: pressurep, densityr, and particle
velocity v. Here all acoustic fields are functions of the posi-
tion vectorr PR3 and timetPR. In an initial state without
sound perturbation these quantities assume constant values
given by p=p0, r=r0, and v=0. The quantityp−p0 is the
excess of pressure in the medium. The equations that de-
scribe the dynamic of ideal fluids can be derived from con-
servation principles for mass, momentum, and thermody-
namic equilibrium. These equations, neglecting effects of
gravity, are presented here as followsf29g:

]r

]t
+ = · srvd = 0, s1d

r
dv

dt
= − = p, s2d

p = p0S r

r0
Ds1+B/Ad

, s3d

where= is the gradient operator, the symbol · stands for the
scalar product, andB/A is the Fox-Wallace parameterf30g
which characterizes the nonlinearity of the fluid. Equations
s1d–s3d form a system of nonlinear partial differential equa-

tions that gives a full description of the wave propagation in
the fluid. The conservation of fluid mass is represented by
Eq. s1d. Equations2d is a version of the Newton’s second law
in fluid dynamics. Equations3d is an adiabatic equation of
state known as Tait’s equation.

A lossless fluid is irrotational. Thus, according to the
Helmholtz vector theorem, the particle velocity can be ex-
pressed in terms of the velocity potential functionf as

v = − = f. s4d

The velocity potential can be expanded as a sum of a linear
term and higher-order contributions as follows,

f = fs1d + fs2d + ¯ , s5d

wherefs1d and fs2d are the linear and the second-order ve-
locity potentials, respectively. In terms of the linear velocity
potential, the linear pressure and velocity fields are given by

ps1d = r0
]fs1d

]t
, s6d

vs1d = − = fs1d. s7d

B. Instantaneous net force

A volume element in a fluid is subject to a stress caused
by the sound wave propagation throughout it. Stresses
caused by sound perturbation in the fluid should be described
by Eq. s2d.

Consider an ultrasound beam striking a homogeneous ob-
ject of finite extension and surfaceS0 at rest. As the ultra-
sound field hits the object, its surface may be deformed and
dislocated. We denote the object’s surface at the timet by S.
Figure 2 depicts the interaction between the incident ultra-
sound wave and the object target.

The instantaneous net forcef acting on the object is ob-
tained by integrating Eq.s2d on the object’s volume. Since
the ambient pressurep0 does not contribute to the net force
on the object, we can replacep by p−p0 in Eq. s2d. Hence,
integrating Eq.s2d on the object’s volume and using the
Gauss’ integral theorem, we obtain

f =E
S

sp − p0dndS, s8d

wheren is the outward normal unit-vector of the integration
surface.

Radiation force is a phenomenon that depends on the in-
teraction of second-order acoustic fields with the object tar-

FIG. 1. The diagram showing the theory of acoustic radiation
force in different propagating mediums. Dashed ellipses show the
lack of theory for acoustic radiation force.

FIG. 2. The net force exerted on an object by an ultrasound
beam. The dotted contour depicts changes on the object’s surface.
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get. To avoid the integration ofp−p0 over the time-
dependent object’s surfaceS, we need to findp−p0 up to
second order. The idea is to replaceS by S0 for second-order
integrands in Eq.s8d. For first-order integrands, we should
keep S and analyze the contribution of the integral to the
radiation force. From Eqs.s1d–s3d, one can show that the
second-order excess of pressure is given byf31g

p − p0 = r0S ]fs1d

]t
+

]fs2d

]t
D +

ps1d2

2r0c0
2 −

r0v
s1d ·vs1d

2
, s9d

wherec0 is the small-amplitude speed of sound. Substituting
Eq. s9d into Eq.s8d and holding terms up to second order, we
find

f = − r0E
S

]fs1d

]t
ndS− r0E

S0

]fs2d

]t
ndS−

1

2r0c0
2E

S0

ps1d2ndS

+
r0

2
E

S0

svs1d ·vs1ddndS. s10d

By using the relationf23g

E
S

]fs1d

]t
ndS=

d

dt
E

S

fs1dndS+E
S

sn ·vs1ddvs1ddS

in Eq. s10d and again keeping up to the second-order terms,
we get

f = − r0
d

dtSES

fs1dndS+E
S0

fs2dndSD −E
S0

n ·TdS.

s11d

We call the quantityT as the radiation-stress tensor. It is
given by

T ; F ps1d2

2r0c0
2 −

r0svs1d ·vs1dd
2

GI + r0v
s1dvs1d, s12d

whereI is the 333-unit matrix andr0v
s1dvs1d is a dyadf32g

known as the Reynolds’ stress. We have written down Eq.
s12d using the identitiesn ·vs1dvs1d=sn ·vs1ddvs1d andn ·I=n.

Considerg as a function of time. The Fourier transform of
g is defined as

ĝsvd = Ffgg ; E
−`

+`

gstde−jvtdt,

wherev sangular frequencyd is the reciprocal variable oft
and j is the imaginary-unit. To analyze the frequency com-
ponents present in the net of force, we take the Fourier trans-
form of Eq. s11d as follows:

f̂svd = − jvr0FFE
S

fs1dndSG − jvr0E
S0

Fffs2dgndS

−E
S0

n ·FfTgdS. s13d

This equation gives a description of the frequency spectrum
of the net of force acting on the object. We shall use this

equation to calculate the static and the dynamic radiation
forces.

C. Static radiation force

The static component of the net forcef is commonly
known as acoustic radiation force. Here, we call it static
radiation force. Acoustic radiation force has been studied as a
time-averaged force. The rule of the time average is to iso-
late the static componentsv=0d of the net force acting on
the object.

Consider an incident ultrasound wave, periodic in time,
striking the object target. The static component of the radia-
tion force corresponds tov=0 in Eq. s13d. The first two
integrals on the right-hand side of this equation become zero.
Therefore, the static radiation force is

fs = −E
S0

n ·FfTgv=0dS.

Recognizing that the time average ofT over a long time
interval is kTl=FfTgv=0, we get

fs = −E
S0

n · kTldS. s14d

Note thatfs is a real quantity.
The static radiation force can be understood as follows.

The incident ultrasound beam is scattered by the object. The
static radiation force is the time-averaged rate of the momen-
tum change due to the scattering by the object.

The time average of the radiation-stress is a zero-
divergence quantity, i.e.,= ·kTl=0 f4g. This means that no
static radiation force is present in an ideal fluid if there is no
target. Consequently, steady streaming does not happen in
lossless fluidsf33g.

D. Dynamic ultrasound radiation force

In this section, we concentrate on the dynamic radiation
force produced by ultrasound beams whose amplitude is
modulated in time. The amplitude-modulatedsAM d ultra-
sound beam is described by its carrierf0 and modulationDf
frequencies. Here, the time modulation in amplitude of the
ultrasound beam is realized by overlapping in space two CW
ultrasound beams of slightly different frequenciesfa= f0
+Df /2 andfb= f0−Df /2, wheref0 andDf are also called the
center and the difference frequencies, respectively. The cor-
responding angular frequencies of the beam areva=2pfa
and vb=2pfb. We call the resulting beam the “dual-
frequency ultrasound beam.” In fact, if the amplitude and the
phase of the two waves are the same, we have a suppressed
carrier AM beam.

Consider an incident dual-frequency ultrasound beam hit-
ting an object. The first-order velocity potential is formed by
incident and scattered waves in the medium as follows

fs1d = Rehf̂ae
jvat + f̂be

jvbtj, s15d

where Reh·j is the real-part of a complex quantity. The func-

tions f̂a and f̂b are spatial complex amplitudes of each fre-
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quency component of the wave and they are given as the sum
of the velocity potential amplitudes of the incident and scat-
tered waves.

The radiation force exerted on the object by the dual-
frequency beam includes the following components: a static
componentsv=0d, a component at the difference frequency
Dv, and high-frequency components at 2va, 2vb, and va
+vb. In this paper, the component atDv is called the dy-
namic radiation force.

To obtain the static and the dynamic radiation force pro-
duced by the dual-frequency ultrasound beam, we calculate
the Fourier transform of the radiation stressT up to the dif-
ference frequencyDv. Substituting Eq.s15d into Eq. s12d,
through Eqs.s6d ands7d, and taking the Fourier transform of

the result, we obtain the static,kTl, and the dynamic,T̂Dv,
radiation stresses as follows:

kTl = kTal + kTbl, s16d

T̂Dv =
r0

2
fskakbf̂af̂b

* − = f̂a · = fb
*dI + = f̂a = f̂b

*

+ = f̂b
* = f̂ag. s17d

The quantitieskTal andkTbl are the averaged radiation stress
of each frequency component of the dual-frequency wave
andka=va/c0 andkb=vb/c0. Explicitly, the averaged radia-
tion stresseskTal and kTbl are given by

kTml =
r0

4
skm

2 uf̂mu2 − u = f̂mu2dI +
r0

2
s=f̂m = f̂m

* d, m= a,b.

s18d

Now both the static and dynamic radiation force can be ob-
tained. According to Eq.s14d the static radiation force is

fs = −E
S0

n · skTal + kTblddS. s19d

Based on Eq.s13d the amplitudesin complex notationd of the
dynamic radiation force atDv is

f̂Dv = − jr0DvHFFE
S

fs1dndSG
v=Dv

+E
S0

f̂Dv
s2d ndSJ

−E
S0

n · T̂DvdS, s20d

wheref̂Dv
s2d =Fffs2dgv=Dv.

Let us analyze the contribution of the first integral on the
right-hand side of Eq.s20d. By using the Gauss’ integral
theorem, this integral can be expressed as

E
S

fs1dndS= −E
V0

vs1ddV−E
dV

vs1ddV,

whereV0 is volume of the object at rest anddV is the volume
variation of the object induced by the excess of pressure at
the timet ssee Fig. 2d. The first integral in this equation does
not have any harmonic term at the difference frequencyDv,

thus, by taking the Fourier transform of it and isolating the
frequency componentv=Dv, we obtain

FFE
S

fs1dndSG
v=Dv

= − FFE
dV

vs1ddVG
v=Dv

.

Inasmuch as the particle velocity is a limited and continuous
function inside the volumedV, there exists a pointr 0PdV
such thatf34g edVvs1ddV=dVvs1dsr 0,td. Thus, the amplitude
of the dynamic radiation force of the first term in Eq.s20d is

F0 = − jr0DvFFE
S

fs1dndSG
v=Dv

= jDvFfdMv0
s1dgv=Dv,

s21d

wherev0
s1d=vs1dsr 0,td anddM =r0dV corresponds to the fluid

mass variation at the timet caused by the object vibration.
Therefore, the dynamic radiation force can be written as

f̂Dv = jDvFfdMv0
s1dgv=Dv − jDvr0E

S0

f̂Dv
s2d ndS

−
r0

2
E

S0

fskakbf̂af̂b
* − = f̂a · = f̂b

*dn

+ sn · = f̂ad = f̂b
* + sn · = f̂b

*d = f̂agdS. s22d

Thus, the dynamic radiation force exerted on the object
target comes from three different interactions between the
ultrasound field and the object. The first term on the right-
hand side of Eq.s22d corresponds to momentum rate ex-
change due to fluid mass variation caused by the object vi-
bration. The next term in this equation accounts for the
interaction of the second-order velocity potential with the
object target. None of these terms are present on the static
radiation force formulas19d. The last term in Eq.s22d is
related to the interaction of the radiation-stress and the ob-
ject. We shall apply Eq.s22d to calculate the dynamic radia-
tion force on a solid sphere.

In the time domain, the dynamic radiation force is given

as the inverse Fourier transform off̂Dv. Therefore, the dy-
namic radiation force exerted on a object is given by

fDvstd = Rehf̂DvejDvtj. s23d

Note that if Dv=0 and f̂a=f̂b, we have f̂Dv= fs. Conse-
quently, the magnitude of both dynamic and static radiation
forces becomes equal whenDv=0.

III. DYNAMIC RADIATION FORCE ON A SOLID SPHERE

A. Linear ultrasound scattering

Consider a collimated dual-frequency plane wave de-
scribed by Eq.s15d impinging on a solid elastic sphere of
radiusr0 localized at the origin of the coordinate system. The
beam propagates along thez axis. The sphere is character-
ized by three parameters: densityr1, compressional wave
speedcc, and shear wave speedcs. The amplitude functions
of the incident plus the scattered waves are given, in spheri-
cal coordinates, byf35g
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f̂m = A0o
n=0

`

s2n + 1ds− jdnf jnskmrd + Sm,nhn
s2dskmrdg

3Pnscosud, m= a,b. s24d

whereA0 is the magnitude of the incident wave,km=vm/c0,
jn is the spherical Bessel function,Sm,n is the scattering func-
tion determined by boundary conditions, andhn

s2d is the
spherical Hankel function of the second kind. The scattering
function is given by

Sm,n = −
Dm,njnsxmd − xmjn8sxmd

Dm,nhn
s2dsxmd − xmhn

s2d8sxmd
, m= a,b, s25d

where the prime symbol means derivative with respect to the
function’s argument andxm=kmr0. The coefficientDm,n is
given by

Dm,n =
r0sxm,sd2

2r1
S njnsxm,cd − xm,cjn+1sxm,cd

sn − 1d jnsxm,cd − xm,cjn+1sxm,cd

−
2nsn + 1d jnsxm,sd

s2n2 − xm,s
2 − 2d jnsxm,sd + 2xm,sjn+1sxm,sd

D
3 S sxm,s

2 /2 − n2 + nd jnsxm,cd − 2xm,cjn+1sxm,cd
sn − 1d jnsxm,cd − xm,cjn+1sxm,cd

−
2nsn + 1dfs1 − nd jnsxm,sd + xm,sjn+1sxm,sdg
s2n2 − xm,s

2 − 2d jnsxm,sd + 2xm,sjn+1sxm,sd
D−1

,

s26d

wherexm,c=sc0/ccdxm andxm,s=sc0/csdxm.
The solution for the rigid and movable sphere can be ob-

tained by settingcc, cs→` in the previous discussion. The
solution for liquid spheres is achieved by lettingcs→0.

B. Second-order ultrasound scattering

Before calculating the dynamic radiation force, we need
to analyze the contribution of the second-order velocity po-
tential in Eq.s22d. The amplitude functionf̂Dv

s2d for an inci-
dent wave is calculated in the Appendix. In the preshock
wave range, it is given by

f̂Dv
s2d = −

«v0
2

2Dv
je−jDkz, s27d

where«=1+B/ s2Ad, v0 is the peak amplitude of the particle
velocity at the ultrasound source, andDk=Dv /c0. To sim-
plify our analysis it was assumed thatDkz!1. If the differ-
ence frequency is about 10 kHz, then the target should be
around 1 cm of the ultrasound source.

Now, we need to solve the scattering problem for the
second-order velocity potential. This problem is similar to
the linear scattering presented in Sec. III A. Hence, the total
second-order velocity potential amplitude can be written in
spherical polar coordinates as

f̂Dv
s2d = − j

«v0
2

2Dv
o
n=0

`

s2n + 1ds− jdnf jnsDkrd + Snhn
s2dsDkrdg

3Pnscosud, s28d

where the scattering functionSn is given through Eqs.s25d
and s26d by settingxm=Dkr0.

According to Eq.s22d the contribution of the second-
order velocity potential is given by integrating Eq.s28d over
the sphere surface. This contribution to the dynamic radia-
tion force has only one component in thez direction given by

F1 = − j2pr0
2r0DvE

0

p

f̂Dv
s2d sr0dsinu cosudu

= − pr0
2E0

4«

3
f j1sDkr0d + S1h1

s2dsDkr0dg, s29d

whereE0=sr0v0
2d /2 is ultrasound energy density at the wave

source.

C. Dynamic radiation force function

To calculate the dynamic radiation force we introduce the
following variablesum=kmr sm=a,bd andv=cosu. By sym-
metry considerations the dynamic radiation force on the
sphere is only in thez direction. Substituting Eq.s24d into
Eq. s22d leads to the amplitude of the dynamic radiation
force as

f̂Dv = F0 + F1 + F2 + F3 + F4 + F5, s30d

where the amplitude functions are

F2 = − pr0
2r0kakbE

−1

1

f̂asxa,vdf̂b
*sxb,vdvdv, s31d

F3 = − pr0
2r0kakbE

−1

1 U ]f̂a

]ua

U
ua=xa

U ]f̂b
*

]ub

U
ub=xb

vdv, s32d

F4 = pr0E
−1

1 U ]f̂a

]v
U

ua=xa

U ]f̂b
*

]v
U

ub=xb

vs1 − v2ddv, s33d

F5 = − pr0r0E
−1

1 SUka

]f̂b
*

]v
U

ub=xb

U ]f̂a

]ua

U
ua=xa

+ Ukb
]f̂a

]v
U

ua=xa

U ]f̂b
*

]ub

U
ub=xb

Ds1 − v2ddv, s34d

andF0 andF1 are given by Eqs.s21d ands29d, respectively.
To obtain the amplitude functions of the dynamic radia-

tion force in Eq. s30d, we substitute Eq.s24d into Eqs.
s31d–s34d, which leads to

F2 = −
2pr0

2EDv

xaxb
o
n=0

`

sn + 1dxaxbsRa,nRb,n+1
* + Ra,n+1Rb,n

* d,

s35d
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F3 = −
2pr0

2EDv

xaxb
o
n=0

`

sn + 1dxaxbsRa,n8 Rb,n+18* + Ra,n+18 Rb,n8* d,

s36d

F4 =
2pr0

2EDv

xaxb
o
n=0

`

nsn + 1dsn + 2dsRa,nRb,n+1
* + Ra,n+1Rb,n

* d,

s37d

F5 =
2pr0

2EDv

xaxb
o
n=0

`

fnsn + 1dsxbRa,nRb,n+18* + xaRa,n+18 Rb,n
* d

− sn + 1dsn + 2dsxaRa,n8 Rb,n+1
* + xbRa,n+1Rb,n8* dg, s38d

whereRm,n=s−jdnf jnsxmd+Sm,nhn
s2dsxmdg andEDv=r0kakbA0

2 is
the difference frequency component of the ultrasound energy
density.

Let us focus on the contribution ofF0 to the dynamic
radiation force on the sphere. The magnitude of the velocity
particle of the incident plane wave isp0/ sr0c0d, wherep0 is
the magnitude of the incident pressure. The magnitude of the
velocity particle inside the object volume variationdV is
smaller than its counterpart in the fluid. Hence, from Eq.s21d
we have uF0u,DvdMmaxp0/ sr0c0d, where dMmax is the
maximum amount of fluid mass dislocated by the sphere
vibration. Measurements of the amplitude dislocation in-
duced by the dynamic radiation forcesDf ,1 kHz, f0 around
1 MHz, andp0,60 kPad on a stainless steel sphere of 1 mm
diameter in water yielded results less than 1mm f36g. Now,
we compare the magnitude ofF0 andF2. From Eq.s35d we
have

UF0

F2
U ,

r0f0
2Dfr0

2dr

c0p0
,

wheredr is the sphere radius variation. For the given condi-
tion of the experiment on measuring the dislocation ampli-
tude of the sphere caused by the dynamic radiation force, the
ratio uF0/F1u,10−2. In this case or wheneverdr is negli-
gible, only the componentsF1 to F5 are relevant to the ra-
diation force formulas30d.

One can show from Eq.s23d that the dynamic radiation
force on the sphere in the time domain is

fDvstd = pr0
2EDv RehŶDvejDvtjez, s39d

whereŶDv is the dynamic radiation force function given by

ŶDv = −
2

xaxb
o
n=0

`

sn + 1dhfxaxb − nsn + 2dgsRa,nRb,n+1
*

+ Ra,n+1Rb,n
* d + nsxbRa,nRb,n+18* + xaRa,n+18 Rb,n

* d − sn + 2d

3sxaRa,n8 Rb,n+1
* + xbRa,n+1Rb,n8* d + xaxbsRa,n8 Rb,n+18*

+ Ra,n+18 Rb,n8* dj − R0, s40d

whereR0=s4«E0/3EDvdf j1sDkr0d+S1h1
s2dsDkr0dg.

The sphere is also subjected to a static radiation force,
which is the sum of the force due to each ultrasound wave in

the incident beam. The static radiation force on a spherical
target has been calculated by Hasegawaf27g. The result
reads

fs = pr0
2sEaYa + EbYbdez,

whereEm=r0skmA0d2/2 sm=a,bd. The quantityYm is the ra-
diation pressure function given by

Ym = −
4

xm
2 o

n=0

`

sn + 1dsam,n + am,n+1 + 2am,nam,n+1

+ 2bm,nbm,n+1d, m= a,b, s41d

wheream,n andbm,n are the real and the imaginary parts of

Sm,n, respectively. Moreover, whenDv=0, thenŶDv=Ym.
Finally, the total radiation force exerted on the sphere by

the dual-frequency plane wave is given by

f radstd = pr0
2sEaYa + EbYb + EDv RehŶDvejDvtjdez. s42d

D. Numerical evaluation of the dynamic radiation force

The dynamic radiation force functionŶDv was evaluated
numerically in MATLAB 6.5 sMathWorks, Inc.d. Two different
materials were chosen in this evaluation: brass and stainless
steel. The physical constants of the analyzed spheres are
given in Table I. The surrounding fluid of the sphere was
assumed to be water with densityr0=1000 Kg/m3 and com-
pressional velocityc0=1500 m/s. The radius of the sphere is
r0=0.5 mm.

We are interested here in analyzing how the dynamic ra-
diation force changes with the center frequencyf0. We evalu-

ate the functionŶDv as a function ofk0r0 varying from 0.1 to
10. The difference frequencyDf was fixed to 0, 50,
and 100 kHz. To assure that the center frequencyf0 is
always positive, we assume thatf0 varies from
50 kHz to 4.77 MHz.

Before presenting the numerical evaluation results, let us
take a closer look at the contribution of the second-order
velocity potential to the dynamic radiation force given in Eq.
s29d. For the frequency range considered here, the energies
E0 and EDv are about the same order of magnitude. In this
case, the numerical evaluation ofR0 fsee Eq.s40dg for the
chosen frequency range has shown that the dimensionless
amplitude of this quantitys10−3d is much smaller than the
unit. In fact, for the frequency range used in the simulations
we haveDkr0!1. Therefore, we may neglect the contribu-

TABLE I. The physical constants used in the calculation of the
radiation force functions.

Material
Density
sKg/m3d

Speed of sound

Compressional
sm/sd

Shear
sm/sd

Brass 8100 3830 2050

Stainless steel 7670 5240 2978
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tion of R0 to the dynamic radiation force function given by
Eq. s40d hereafter.

In Figs. 3 and 4, we see the magnitude of the dynamic

radiation force functionuŶDvu. The inset of the figures shows

the phase ofŶDv. We can see that whenDf =0 the function

uŶDvu of both materials is equal to the radiation pressure
function Ym, as expected. The dynamic radiation force func-
tion of both material exhibits a fluctuation patternsdips and
peaksd due to resonances of the ultrasound wave inside the
sphere. The fluctuations depend on resonances of the scatter-
ing functionSm,n, which is related to the material parameters
sdensity, compressional, and shear speed of the waved. No

significant changes inŶDv smagnitude and phased are ob-
served as the difference frequency varies from 0 to 50 kHz.
Further, the phase remains practically constant with zero
value. This occurs because at 50 kHz we haveDkr0=0.02,

which implies kar0.kbr0. Thus ŶDv approaches toYm sm
=a,bd.

For the brass sphere, a prominent peak occurs inuŶDvu
with Df =0 atk0r0=3.55, as seen in Fig. 3. When the differ-
ence frequency is 100 kHz, the peak changes its position to
3.27 and the whole fluctuation pattern changes. However, the
fluctuation form follows that one ofDf =0 with smaller am-
plitudes. The phase also presents a fluctuation whose ampli-
tude is approximatelyp /6 rad.

The functionuŶDvu for the stainless steel sphere withDf
=0 presents dips, as shown in Fig. 4. The first dips occurs at
k0r0=5.17. At Df =100 kHz, the fluctuations inŶDv have a
different pattern with smaller amplitude compared to the case
of Df =0. The phase ofŶDv is practically constant when
Df =50 kHz, except whenk0r0,1. For Df =100 kHz, the
phase exhibits fluctuations with amplitude of aboutp /6 rad.
The phase fluctuations follows the pattern exhibited in the
magnitude ofŶDv.

Now we analyze how the dynamic radiation force on the
spheres depends uponDf for a given f0. The values chosen
for f0 for both spheres correspond to resonances in the static
radiation force. The difference frequencyDf varies from

−100 to 100 kHz to show how the functionŶDv behaves in
the vicinity of a resonance. In Fig. 5, we have the function

uŶDvu plotted for the brass sphere. The phase ofŶDv is shown
in the inset of the figure. We fixedk0r0 to 3.55 and 4.82 for
the dashed and solid lines, respectively. These values corre-
spond to the first peak and dip, respectively, in Fig. 3. Both

the magnitude and phase ofŶDv change shape considerably
ask0r0 changes.

The plot of the functionŶDv of the stainless steel sphere
asDf varies is shown in Fig. 6. The inset of the figure plots

the phase ofuŶDvu. The quantityk0r0 was fixed at the first and
second dips, which corresponds to 5.17 and 6.85 for the
dashed and solid lines, respectively.

FIG. 3. The dynamic radiation force function of the brass

sphere. The inset plot is the phase ofŶDv. Legend: dashed line
s0 kHzd, dotted lines50 kHzd, and solid lines100 kHzd.

FIG. 4. The dynamic radiation force function of the stainless

steel sphere. The inset plot is the phase ofŶDv. Legend: dashed line
s0 kHzd, dotted lines50 kHzd, and solid lines100 kHzd.

FIG. 5. The dynamic radiation force function asDf varies for
the brass sphere. Legend: dashed linesk0r0=3.55d and solid line
sk0r0=4.82d.

FIG. 6. The dynamic radiation force function asDf varies for
the stainless steel sphere. Legend: dashed linesk0r0=5.17d and solid
line sk0r0=6.85d.
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A comparison of the normalized magnitude of static and
dynamic radiation forces for different values ofDf can be
seen in Table II. For each sphere the center frequency was set
in the first resonance of the static radiation force. The reso-
nances correspond tok0r0=3.55 andk0r0=5.17 for the brass
and stainless steel spheres, respectively. The static radiation
force functionsYa andYb were calculated through Eq.s41d.
The magnitudes are normalized by the highest ultrasound
energy densityEa times the cross-section area of the sphere.
Hence, the static and the dynamic radiation force magnitudes

become fs=Ya+skb/kad2Yb and fd=skb/kaduŶDvu, respec-
tively. The relative difference of the radiation force magni-
tudes is defined in percent as 2ufd− fsu / sfd+ fsd ·100%. As
shown in Table II, the static and dynamic radiation forces
present have approximately the same magnitude for both
spheres. The relative difference becomes larger asDf in-
creases.

IV. CONCLUSIONS

We have presented a theory to calculate the dynamic ul-
trasound radiation force exerted on an object by a dual-
frequency CW ultrasound beam in lossless fluids. The theory
is valid for beams with any spatial distribution. The ampli-
tude of the induced vibration by the dynamic radiation force
on the object was assumed to be much smaller than its char-
acteristic dimensions. No assumptions have been made on
geometric shape of the object. A formula for the dynamic
radiation force was obtained—see Eq.s22d—in terms of the
first- and second-order velocity potentials. The dependence
of the dynamic radiation force with the nonlinear parameter
B/A of the medium was analyzed.

We have calculated the dynamic radiation force exerted
on a solid sphere by a dual-frequency CW plane wave in
water. The dynamic radiation force is proportional to the
cross-section area of the sphere, the dynamic ultrasound en-
ergy, and the dynamic radiation force function. The contri-
bution of the first-order velocity potential to the radiation
force, accounted by Eq.s30d, was neglected because we con-

sidered that the dislocation of the sphere is very small. The
contribution of the medium nonlinearity to the dynamic ra-
diation force is negligible ifDkr0!1 in a weak nonlinear
medium. However, it may become more significant in
strongly nonlinear mediums or whenDkr0,1. Numerical
evaluation of the dynamic radiation force function revealed a
fluctuation pattern as the center frequency varies. The fluc-
tuations are similar to those present in the static radiation
force function. Analysis of the static and the dynamic radia-
tion force on the sphere has shown that they have approxi-
mately the same magnitude.

In conclusion, the presented dynamic radiation force for-
mula s22d generalizes Yosioka’s formulaf23g, which stands
only for static radiation force. The dynamic radiation force
formula can be extended for a multi-frequency CW ultra-
sound beam. This is particularly useful to study pulsed radia-
tion force in which the incident ultrasound beam can be ex-
panded in time as a Fourier series.
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APPENDIX: SECOND-ORDER VELOCITY POTENTIAL

To calculate the contribution of the second-order velocity
potential to the dynamic radiation force on the sphere, we
consider the lossless Burger’s equation

]v
]z

−
«

c0
2v

]v
]t

= 0,

where v is the velocity particle in thez direction, «=1
+B/ s2Ad, and t= t−z/c0 is the retarded time. The source
wave form is given by

vs0,td = v0fsinsvatd + sinsvbtdg,

wherev0 is the peak amplitude of the velocity particle at the
wave sourcesz=0d. Hence, the second-order velocity particle
at the difference frequency in the preshock wave range is
given by f37g

vDv
s2d . −

«v0
2

2c0
DkzsinsDvt − Dkzd.

This approximated solution is valid for«v0Dkz/c0!1. We
obtain the second-order velocity potential at the difference
frequency by integrating this equation overz. Thus, in com-
plex notation, the amplitude of the velocity potential atDv is

f̂Dv
s2d =

«v0
2

2Dv
sDkz− jde−jDkz.

Notice that the time-dependent integration constant was
dropped because it evaluates zero in the closed surface inte-
gral of Eq.s22d.

TABLE II. The relative difference between static and dynamic
radiation force magnitudes in %.

Df
skHzd

Relative difference

Brass Stainless steel

1 0.00 0.00

20 0.11 0.49

40 0.45 1.75

60 1.04 3.20

80 1.86 4.34

100 2.87 4.89
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